Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Coronavirus Drug Discovery: Druggable Targets and In Silico Update: Volume 3 ; : 335-354, 2022.
Article in English | Scopus | ID: covidwho-2149158

ABSTRACT

Discovery of drugs against coronavirus disease 2019 (COVID-19) is the need of the hour. Plant-derived medicines offer safety, long-term stability, and capability to act on disease with multifactorial causation. In Ayurveda/Indian traditional medicine, there are remedies against almost all diseases so far identified but its efficacy and molecular mechanism of action are seldom investigated. Hence, the authors have validated the efficacy of phytochemicals derived from the widely used nutraceutical, Punica granatum against COVID-19 through in silico methods. The SARS-CoV-2 main protease enzyme (Mpro) was selected as the target protein and 219 phytochemicals from P. granatum were used as ligands. The docked molecules having binding energy≤-6kcal/mol were considered as hit molecules and top ranked five hit molecule's binding interactions, molecular properties, pharmacokinetic properties, and toxicity were analyzed and identified the compound luteolin as the best lead. The study also revealed the nutraceutical value of P. granatum against SARS-CoV-2. © 2022 Elsevier Inc. All rights reserved.

2.
Molecules ; 27(22)2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2123759

ABSTRACT

This work identifies new ligands of the nucleoprotein N of SARS-CoV-2 by in silico screening, which used a new model of N, built from an Alphafold model refined by molecular dynamic simulations. The ligands were neuropeptides, such as substance P (1-7) and enkephalin, bound at a large site of the C-terminal or associated with the N-terminal ß-sheet. The BA4 and BA5 Omicron variants of N also exhibited a large site as in wt N, and an increased flexibility of the BA5 variant, enabling substance P binding. The binding sites of some ligands deduced from modeling in wt N were assessed by mutation studies in surface plasmon resonance experiments. Dynamic light scattering showed that the ligands impeded RNA binding to N, which likely inhibited replication. We suggest that the physiological role of these neuropeptides in neurotransmission, pain and vasodilation for cholecystokinin and substance P could be altered by binding to N. We speculate that N may link between viral replication and multiple pathways leading to long COVID-19 symptoms. Therefore, N may constitute a "danger hub" that needs to be inhibited, even at high cost for the host. Antivirals targeted to N may therefore reduce the risk of brain fog and stroke, and improve patients' health.


Subject(s)
COVID-19 , Neuropeptides , Humans , Nucleoproteins , SARS-CoV-2 , Ligands , Substance P , Synaptic Transmission , Inflammation , Post-Acute COVID-19 Syndrome
3.
Curr Drug Targets ; 23(3): 240-259, 2022.
Article in English | MEDLINE | ID: covidwho-1760079

ABSTRACT

Since December 2019, the new Coronavirus disease (COVID-19) caused by the etiological agent SARS-CoV-2 has been responsible for several cases worldwide, becoming pandemic in March 2020. Pharmaceutical companies and academics have joined their efforts to discover new therapies to control the disease since there are no specific drugs to combat this emerging virus. Thus, several tar-gets have been explored; among them, the transmembrane protease serine 2 (TMPRSS2) has gained greater interest in the scientific community. In this context, this review will describe the importance of TMPRSS2 protease and the significant advances in virtual screening focused on discovering new inhibitors. In this review, it was observed that molecular modeling methods could be powerful tools in identifying new molecules against SARS-CoV-2. Thus, this review could be used to guide re-searchers worldwide to explore the biological and clinical potential of compounds that could be promising drug candidates against SARS-CoV-2, acting by inhibition of TMPRSS2 protein.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Drug Delivery Systems , Humans , Models, Molecular , Pandemics , Serine Endopeptidases
4.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: covidwho-1493345

ABSTRACT

The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered covalent small-molecule ketobenzothiazole (kbt) TMPRSS2 inhibitors which are structurally distinct from and have significantly improved activity over the existing known inhibitors Camostat and Nafamostat. Lead compound MM3122 (4) has an IC50 (half-maximal inhibitory concentration) of 340 pM against recombinant full-length TMPRSS2 protein, an EC50 (half-maximal effective concentration) of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV-SARS-CoV-2 chimeric virus, and an EC50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East respiratory syndrome coronavirus (MERS-CoV) cell entry with an EC50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice, with a half-life of 8.6 h in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.


Subject(s)
Benzothiazoles/pharmacology , COVID-19 Drug Treatment , Oligopeptides/pharmacology , SARS-CoV-2/drug effects , Serine Endopeptidases/genetics , Animals , Benzamidines/chemistry , Benzothiazoles/pharmacokinetics , COVID-19/genetics , COVID-19/virology , Cell Line , Drug Design , Epithelial Cells/drug effects , Epithelial Cells/virology , Esters/chemistry , Guanidines/chemistry , Humans , Lung/drug effects , Lung/virology , Mice , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Oligopeptides/pharmacokinetics , SARS-CoV-2/pathogenicity , Serine Endopeptidases/drug effects , Serine Endopeptidases/ultrastructure , Small Molecule Libraries/pharmacology , Substrate Specificity/drug effects , Virus Internalization/drug effects
5.
Future Med Chem ; 13(16): 1353-1366, 2021 08.
Article in English | MEDLINE | ID: covidwho-1282697

ABSTRACT

Background: The new coronavirus pandemic has had a significant impact worldwide, and therapeutic treatment for this viral infection is being strongly pursued. Efforts have been undertaken by medicinal chemists to discover molecules or known drugs that may be effective in COVID-19 treatment - in particular, targeting the main protease (Mpro) of the virus. Materials & methods: We have employed an innovative strategy - application of ligand- and structure-based virtual screening - using a special compilation of an approved and diverse set of SARS-CoV-2 crystallographic complexes that was recently published. Results and conclusion: We identified seven drugs with different original indications that might act as potential Mpro inhibitors and may be preferable to other drugs that have been repurposed. These drugs will be experimentally tested to confirm their potential Mpro inhibition and thus their effectiveness against COVID-19.


Subject(s)
Antiviral Agents/chemistry , COVID-19 Drug Treatment , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects , Small Molecule Libraries/chemistry , Viral Proteases/metabolism , Antiviral Agents/pharmacology , Databases, Chemical , Drug Evaluation, Preclinical , Humans , Ligands , Molecular Docking Simulation , Molecular Structure , Protease Inhibitors/pharmacology , Protein Binding , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL